About
我现在是一名墨尔本大学博士三年级的学生,我的指导老师是Trevor Cohn 教授和Tim Baldwin 教授.
个人经历
教育
2020年2月至今
博士
自然语言处理(NLP),墨尔本大学
2018年2月 - 2019年12月
硕士
数据科学,墨尔本大学
2013年9月 - 2017年6月
学士
计算机科学与技术,山东大学(威海)
工作
2019年 - 2021年
助教
统计机器学习, School of Computing and Information Systems, The University of Melbourne.
2019年第一学期
助教
网络搜索与文本分析, School of Computing and Information Systems, The University of Melbourne.
2015年 - 2016年
主席
AI机器人爱好者协会,山东大学(威海)
2013年 - 2017年
班长
计算机科学与技术2班,山东大学(威海)
正在进行的研究
- Han, Xudong, Timothy Baldwin and Trevor Cohn (2022) Towards Equal Opportunity Fairness through Adversarial Learning, CoRR abs/2203.06317.
会议论文
- Han, Xudong, Timothy Baldwin and Trevor Cohn (to appear). Everybody Needs Good Neighbours: An Unsupervised Locality-based Method for Bias Mitigation. In Proceedings of The 11th International Conference on Learning Representations (ICLR 2023), Kigali, Rwanda.
- Han, Xudong, Timothy Baldwin and Trevor Cohn (to appear). Fair Enough: Standardizing Evaluation and Model Selection for Fairness Research in NLP. In Proceedings of The 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), Dubrovnik, Croatia.
- Han, Xudong, Aili Shen, Yitong Li, Lea Frermann, Timothy Baldwin and Trevor Cohn. 2022. FairLib: A Unified Framework for Assessing and Improving Fairness, In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022) Demo Session, Abu Dhabi.
- Shen, Aili, Xudong Han, Trevor Cohn, Timothy Baldwin and Lea Frermann. 2022. Does Representational Fairness Imply Empirical Fairness? In Findings of AACL-IJCNLP 2022, virtual.
- Han, Xudong, Aili Shen, Trevor Cohn, Timothy Baldwin and Lea Frermann. 2022. Systematic Evaluation of Predictive Fairness , In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (AACL-IJCNLP 2022), virtual.
- Han, Xudong, Aili Shen, Yitong Li, Lea Frermann, Timothy Baldwin and Trevor Cohn. 2022. Towards Fair Dataset Distillation, In Proceedings of the Third Workshop on Simple and Efficient Natural Language Processing (SustainNLP 2022), Abu Dhabi, UAE.
- Han, Xudong, Timothy Baldwin and Trevor Cohn. 2022. Balancing out Bias: Achieving Fairness Through Balanced Training, In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022), Abu Dhabi, UAE.
- Shen, Aili*, Xudong Han*, Trevor Cohn, Timothy Baldwin and Lea Frermann. 2022. Connecting Loss Difference with Equal Opportunity for Fair Models, In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics – Human Language Technologies (NAACL HLT 2022). [code]
- Subramanian, Shivashankar, Xudong Han, Timothy Baldwin, Trevor Cohn and Lea Frermann (2021) Evaluating Debiasing Techniques for Intersectional Biases, In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP2021), Online and Punta Cana, Dominican Republic, pp. 2492–2498.
- Han, Xudong, Timothy Baldwin and Trevor Cohn (2021) Decoupling Adversarial Training for Fair NLP, In Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), virtual, pp. 471–477. [code]
- Han, Xudong, Timothy Baldwin and Trevor Cohn (2021) Diverse Adversaries for Mitigating Bias in Training, In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021), virtual, pp. 2760—2765. [code]
- Han, Xudong, Philip Schulz, and Trevor Cohn (2019) “Grounding learning of modifier dynamics: An application to color naming.” In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). [code]
- Yang, Fei, Xudong Han, Jiying Lang, Weigang Lu, Lei Liu, Lei Zhang, and Jingchang Pan. “Commodity Recommendation for Users Based on E-commerce Data.” In Proceedings of the 2nd International Conference on Big Data Research, pp. 146-149. ACM, 2018.